Search - Part 2

June 25, 2013
Search - Part 2

• The Search in Automatic Speech Recognition
• DTW review ➔ pattern based recognition, Optimizations
• Viterbi review ➔ model based recognition, Optimizations
• Continuous speech recognition
 – Reasons against predicting word boundaries
 – Two level DP
 – One stage DP, Search strategies, stack decoder

• Optimization: How to waste not too much Computation Time
 – Tree-Search, Pruning, Pruning with Beam Search
• Search with LM / Grammar
• Multi-Pass Searches, Problems and Examples
• Producing more than one Hypothesis, Problems
• Speeding up the Search
• Search with Context-Dependent Models
Thoughts

- Two views of time synchronous decoder
 - Expand active states
 - Walk through HMM states and look for best predecessor

- Y-axis can be any shape you want it
 - Can be tree-shaped
 - Can be a grammar (→ finite state transducers)

- But remember decision constraints
 - Decisions can only depend on cumulative score of predecessor state and local transition penalty
Two Strategies for Search Techniques

• All search techniques use two strategies for efficiency:
 – Sharing and Pruning

• **Sharing:**
 Keep intermediate results, so that they can be used by other paths without redundant re-computation

• **Pruning:**
 Disregard unpromising paths without wasting time exploring them further
How to not waste too much Computation Time

• While doing a search (time synchronous or asynchronous), we might often have to compute the same things twice.

Example:

| | \(p(AE|t) \) | \(p(AEI|t) \) |
|-----|----------------|----------------|
| AEK | | |
| K | | |
| KEY | | |
| KK | | |
| SH | | |
| AEK | | |

• The words "cash" and "can" have the same two phonemes at their beginning. They only differ in their third phoneme.
• So why compute the emission probability for /C/ or /AE/ at the same time frame twice?
• Also: The partial hypothesized alignment path starting at a given frame index is always the same for "cash" and "can". What can we do about it?
Optimization: Tree Search

Let's organize the y-axis as a tree:

- Mark all states that can be the final state of a word
- Expand these final states of a word to roots of successor trees

Benefit:
- The maximum number of successor states for any state = number of phonemes, which is usually much smaller (~50) than the number of vocabulary words (>10000).
Optimization: Pruning (Beams)

In general:
Pruning means cutting off a part of the search space that is considered to be unimportant and not to contain the optimal solution that we are looking for.

Remember:
Typical unpruned search spaces have 1,000 time frames and 500,000 HMM states.

Where can we apply pruning?
• Standard approach:
 Do not expand every visited search matrix cell
 – E.g. limit the number of active (i.e. to be expanded) states per frame
 – Or: Decide dynamically which states are expanded (beam search)
Pruning with Beam search

- **Beam search** means:
 Define an "angle" for how much we want to look to the left and right:

- **Typical beam search**: Expand only the states which have accumulated likelihoods that are greater than $b \cdot \text{best likelihood}$. $b=\text{beam}$.

- **How to find a good beam?**
 Trial and error

<table>
<thead>
<tr>
<th>Pruning Method</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam search</td>
<td>no sorting, automatic beam width</td>
<td>fuzzy scores \rightarrow wide beam \rightarrow beam $= ?$</td>
</tr>
<tr>
<td>Number of states</td>
<td>constant beam width independent of acoustics</td>
<td>needs sorting</td>
</tr>
</tbody>
</table>
Example: Pruning with one threshold on NAB (Beam ranges from 170 to 230)

Thesis: Monika Woszczyna, pp. 40
Search problems when using Grammars/LMs

- Best predecessor not the same for all words
- Bigrams: Best predecessor depends only on the *identity of current word*:
 - Requires one backpointer per active word-end
 - Still admissible
- Consider how to use bigrams in tree search (delayed bigrams, tree copies)
- Trigrams: best predecessor depends on the *successor of current word*:
 - Things get ugly
 - Lots of state copies, or approximations
- BUT: approximations are better than nothing (poor mans trigrams: just do it)
Language Models / Grammars

- Goal: Estimate $P(W)$ in $P(A|W)*P(W)/P(A)$
- Graphs (very simple tasks)

- Usually:
 - Human-machine applications: Finite state grammars
 - Dictation and human-to-human applications: Statistical Language models (N-grams)
Search with vs. without Language Model (1)

- Grammar defines the possibilities / probabilities of word transitions.
- The transition into an initial state of a word Z is computed by maximizing (Viterbi/DTW) the scores/accumulated distances $C(W)$ of all word-final states in the previous time frame and adding the local acoustic score $am(Z)$.
- This depends on whether we use a grammar or not:

 without grammars

 $X \xrightarrow{c(X)} \: Y \xrightarrow{c(Y)}$

 with grammars

 $X \xrightarrow{c(X) + am(Z)} \: Y \xrightarrow{c(Y) + am(Z)}$

- When using a grammar, we additionally have to add to the accumulated score a language-model score $lm(word, Z)$.
Search with vs. without Language Model (2)

- **Without grammar**: The best predecessor state is the same for all word-initial states
 - expand only the word-final state that has the best score in a frame
- **With grammar**: The best predecessor state depends also on the word transition probability/penalty
Tree-Search and Language Model

When using tree search with a language model, we have a problem.

After making a word-to-word transition, we don't know which word we are entering?

So what is the probability of the transition?

Solution: delayed bigrams
Delayed Bigrams: Tree-Search with Grammar

We have to "remember" a word-to-word backpointer

➔ When we reach the final state of a word, we still know where we came from.

When entering a new word (root node of the tree) we don't add/multiply the language model immediately, instead we incorporate $p(w_j|w_i)$ when we handle the last state of w_j.

Make every word's last state unique. When we process a final state then we know exactly which word we are in and where we came from.

Disadvantage: At the entry point we don't know the LM information, this might result in pruning and segmentation errors, especially if LM info is important for task
Tree-structured lexicon:

Problem: No bigram information can be included until word identity is known.

Idea: Estimate unigram information of the remainder subtree (*)

Substitute by the bigram information as soon as possible.

Especially helpful in case of very small beams (less pruning errors)

(Woszczyna/Finke, Steinbiss)

\[
P(\text{have}) + P(\text{has}) \quad \quad \frac{P(\text{has} \mid \text{he})}{P(\text{have}) + P(\text{has})} \quad \frac{P(\text{have} \mid \text{I})}{P(\text{have}) + P(\text{has})}
\]

(*) with really clever setup instead distribute N-gram estimate
Multi-Pass Searches

Remember forward-backward algorithm:
First pass: forward pass to compute α,
Second pass: backward to compute β

Why use multiple passes in continuous speech recognition?
• Stack decoder: We could use some good estimator for the score of the remainder (A*)
• Pruning: Good lookahead
 ➔ Decide which part of the search space should be pruned away.
• Recover from errors resulting from delayed bigrams

Forward-backward search:
• First run backward pass
• Then run forward pass using backward scores to do pruning
• Not applicable for run-on!
Problems with Multi-Pass Searches

- When using a search pass to compute information for pruning, this pass must be much faster than the actual search pass.
- By definition, it can not produce better results than the actual search pass (otherwise make it the actual pass).
- What if we want/need \textit{runon} recognition (i.e. start recognizing - and processing - before the speaker has finished the sentence).
- We can not wait till the end of the utterance to compute an estimate for the remainder.
- How do we run a backward pass for continuous speech recognition with grammar?
- If we know $p(w_j \text{ follows } w_i)$ we don't automatically have $p(w_i \text{ precedes } w_j)$.
- Where do we get that \textit{backward bigrams} from?
- Have to know unigrams and apply bayes rule:

\[
P(B|A) = P(A|B) \cdot P(B) / P(A)
\]
Example for a Multi-Pass Search

First Pass:
Run a tree search (forward direction).
Use a narrow beam and/or weak but fast acoustic models.
Remember for every word, at what times it was "active" (not pruned away).

Result: smaller search space =

<table>
<thead>
<tr>
<th>word 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>word 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>word n</td>
<td></td>
</tr>
</tbody>
</table>

Second Pass:
Run a regular Viterbi search (one-stage DTW) but consider the inactive areas already pruned away. This time use a wider beam and/or powerful but possibly slower acoustic models.
Producng more than one Hypothesis (1)

Reasons why the recognizer should also deliver less likely hypotheses:

- Do postprocessing on all hypotheses with additional knowledge ...
- E.g. According to pragmatic knowledge "gimme a nudist play" is less likely than "gimme a new display"
- Parsing on the best parts of several different hypotheses such that the whole utterance can be parsed (speech understanding)
- Offer error recovery mechanisms to the user, e.g.:
Producing more than one Hypothesis (2)

How can the recognizer produce less likely hypotheses:

Isolated word recognition:
- Easy: Do not only report the word with the highest likelihood but also the next \(n \) best words

Continuous speech recognition:

- **Different recognizers:**
 - Run several different recognizers, report all results
 - Nice side effect: DARPA's ROVER takes majority vote
 \(\Rightarrow \) 10 - 20% error reduction

- **Single recognizer:**
 - Let Viterbi not only remember best predecessor but best \(k \) predecessors
 - Produce multiple backtraces (theoretically up to \(k^T \)), so we need pruning again for finding "good" backtraces
Problems with \textit{n}-best Hypotheses

- Often non-content words (a, the, in, of) are difficult to recognize
- Typical \textit{n-best} output: show me in her face please
 show the inner face see
 show the in her face please
 show the in her face see
 show me the interface please

\rightarrow Many irrelevant variations but wrong content word does not change
 - \textit{n} too small \rightarrow Little use (correct hypo not among \textit{n} best)
 - \textit{n} too large \rightarrow System can become slow and clumsy,
 slow search for correct hypothesis

- Solution: \textbf{Word lattices}
Output Formats

Different types of output:

- 1\(^{st}\)-best: Word string
- N-best: N word strings
- Lattices: Time-marked directed, acyclic graph
- Confusion networks: Directed graph with total ordering
Output Formats: Word Lattices

- Lattices nodes contain:
 - Word identities
 - Acoustic scores
 - Time information

- Lattice links contain:
 - Acoustic score for context models
 - LM scores (computed on-the-fly)

- Generate 1^{st}-best, N-best, and CNs from lattices
Output Formats: Example

- Lattice:

 - Contains:

 Node = word, begin + end frame, ac-score (α, β, γ)

 → = ac-delta-score (lm-score)
Output Formats: Confusion Networks

• Sketch of construction algorithm
 – Prune lattice using (lattice link) confidences
 – Collect ordering information
 • Words have temporal order
 • Words are linked
 • Ordering prevents clustering
 – Construct within-word clusters using confidence
 – Construct inter-word clusters using confidence
 – Order output according to item confidence
Example: Lattice vs Confusion Network (CN)

Output Formats: Example (1)

- Original decoder output: Word-Lattice

```
so <uhm> that clear
dad is
```

- Back-tracking:
 - 1st-best: so is dad clear
 - 2nd-best: so <uhm> that clear
Output Formats: Example (2)

- Original decoder output: Word-Lattice

 so \[\rightarrow\] is \[\rightarrow\] dad \[\rightarrow\] clear
 \[\leftarrow\] <uhm> \[\rightarrow\] that

- Confusion Network without time marks:

 so \[\rightarrow\] is \[\rightarrow\] dad \[\rightarrow\] clear
 \[\leftarrow\] <uhm> \[\rightarrow\] that

- New hypo: so is that clear
Output Formats

- **1st-best** is “baseline” for WER (word error rate)

- **N-best** can have lower error rate, but often difficult to handle

- **Lattices** can have up to 1/3rd “lattice error rate”, but how to find the path with lowest WER

- **Confusion networks** usually have lower WER (~1%) and are a more compact representation → “best output”?
Confidence Measures

• Confidences can be associated with every item of a hypothesis, lattice, CN, ...
 – Useful for judging the output of a recognizer
 – Example of *.ctm hypo file with confidences:

 • # LDC_20011121-1700_d*_NONE-A-0188 1777.970 0.779050
 • LDC_20011121-1700_d*_NONE A 1780.97 0.11 IT 0.65
 • LDC_20011121-1700_d*_NONE A 1781.09 0.14 WOULD 0.92
 • LDC_20011121-1700_d*_NONE A 1781.23 0.14 COME 1.00
Confidence Measures - Generation

• Confidence measures can be derived from many features:
 – Lattice Link probability (the “standard” way)
 – Hypothesis density
 – Acoustic stability
 – …

Confidence Measures: Example

- Example of lattice link “gamma” confidence measure
Combination of Recognizers

• Want to merge output from different recognizers
 – Reduce WER
 – Improve confidences

• Approaches:
 – ROVER (Jon Fiscus)
 – Lattice intersection
 – Confusion Network Combination

• Works for different channels or recognizers
Speeding up the Search

Therea are several ways to make the search faster:

Reduce number of searched states:
• Pruning techniques (beam search)
• Multiple passes (reduce search to active words)
• Lookaheads: fast predictor for likelihood of current
 (phoneme/word) → prune entire word if unlikely
• Language model lookahead: Don't expand states into
 words that are not likely according to language model

Reduce computation effort per state:
• High degree of tying
 → compact tree, short state-axis, fewer emission probabilities
• Presearched / hierarchically organized codebook vectors
 → Faster calculation of emission probabilities
Isolated word recognition
Easy: only the word-HMMs look a bit more complicated

Continuous speech recognition
Example: Simple search space for a two words CSR.

Lexicon:

<table>
<thead>
<tr>
<th>word</th>
<th>pronunciation</th>
</tr>
</thead>
<tbody>
<tr>
<td>what</td>
<td>W O T</td>
</tr>
<tr>
<td>what</td>
<td>H W O T</td>
</tr>
<tr>
<td>had</td>
<td>H A D</td>
</tr>
<tr>
<td>had</td>
<td>H A T</td>
</tr>
</tbody>
</table>
The search tree becomes less compact

⇒ larger search space when we use context dependent models

Only words that start with the same polyphone share a common root. Cross-word context dependence is very complicated.

⇒ restrict it to e.g.:

• only first and last phonemes of a word are modeled dependent on neighboring words
• the maximum context width can go only one phoneme into the neighboring word
• one-phoneme words are treated separately
Search with context dependent phonemes

- What models to use for last phoneme:
 - Don’t know successor word when evaluating last phone in word
 - Keep multiple copies of last phonemes (fortunately not many word ends active)

- What models to use for first phoneme:
 - With delayed n-grams, predecessor word unknown while evaluating first phone
 - Keep copies of first phone for all varieties, transit from best into second phone, then when resolving delayed n-gram fix score by incorporating score difference.

- This makes first phonemes (almost always active) and last phonemes the most expensive parts of time synchronous decoding
Phoneme Lookaheads

- Idea: Acoustic Lookaheads at the phoneme level
- Using simple (fast) acoustic models for phonemes
- Predict how well each partial hypotheses will do in the next couple of frames
- Use the estimated future score to prune bad hypotheses before more costly score calculations are computed
Search Summary (Part 1+2)

• The Search in Automatic Speech Recognition
• DTW review \(\Rightarrow\) pattern based recognition, Optimizations
• Viterbi review \(\Rightarrow\) model based recognition, Optimizations
• Continuous speech recognition
 – Reasons against predicting word boundaries
 – Two level DP
 – One stage DP, Search strategies, stack decoder

• Optimization: How to waste not too much Computation Time
 – Tree-Search, Pruning, Pruning with Beamsearch
• Search with LM / Grammar
• Multi-Pass Searches, Problems and Examples
• Producing more than one Hypothesis, Problems
• Speeding up the Search
• Search with Context-Dependent Models
Thanks for your interest!