Visual Perception and Attention

Tanja Schultz
Felix Putze
Dominic Heger

31.5.2012
Lecture „Cognitive Modeling“ (SS 2012)
Outline

- Introduction Perception
- Human Senses and Computer sensors
- Neuroscientific Model of Visual Perception
- David Marr’s model of visual perception

- Introduction Attention
- Donald Broadband’s Filter Theory
- Anne Treisman’s Feature Integration
- iCub’s Attention Model
- Jeremy Wolfe’s Guided Search Model
Perception

- Encyclopedia Britannica: *Perception is the process of registering sensory stimuli as meaningful experiences*

- Some aspects of Perception
 - Perception is not a passive receipt of sensory information or sensation
 - Not all stimuli are perceptions, only those that are cognitively processed and belong to the subject’s mental orientation
 - Includes reception, selection, processing, and interpretation of sensory information
 - Perception involves the "top-down" mental state, as well as the "bottom-up" process of processing sensory input.
 - Perception is basis for the construction of mental models of the environment
Computer Science Approach to Perception

- Large number of active and passive computer sensors
 - Cameras: Stereo, Time-of-flight, infrared, thermal, ...
 - Microphones: Close talking, cardiod, arrays, ...
 - Tactile sensors: Laser, Ultrasound, inertial sensors, ...
 - Biosensors: EEG, EMG, EDA, ...
 - Etc.

- Russell & Norvig\(^1\) propose two types of perception
 1. Function features
 - Derive features from sensor and directly use it for motor control
 (E.g. flies control muscles by features derived from optical flow)
 2. Model based perception
 - Construct a model of the world from sensory data
 - Idea: sensory stimuli \(S \) are a function \(f \) of the state of the world \(W \)
 \(f \) is not completely invertible
 \[S = f(W) \]
Human Senses

- Human perceive their world mainly by five senses
 - Visual
 - Acoustic
 - Tactile
 - Olfactory
 - Gustatory

- Specialized sensory areas in the Brain
 - Very simplified illustration
 - E.g. more details on visual system on following slides

- However, large parts of the cortex are multisensory (Ghanzanfar & Schroeder, 2006)

From Sensation and Perception (Wolfe, et al.)
http://www.sinauer.com/wolfe/chap1/sensoryareasF.htm
Human Visual System

- Light arrives
- Projected on the retina
- Photoreceptor cells (rods, cones) connected through intermediate cells to the optic nerve
- Via optic nerve to optic chiasm
 - Information from the left visual field of both eyes (right side of the retina) go to the right hemisphere
 - Information from right go to the left hemisphere
- Thalamus
 - “Gate to consciencesnness”
 - 6 layers of Lateral Geniculate Nucleus (LGN)
Human Visual System

- Two visual pathway streams to each hemisphere
 - Dorsal stream: where?/how?
 - Ventral stream: what?
- Processing works in parallel
- Some of the areas process mainly color, form, motion,
- Some known connections between cortical areas:
 - But also subcortical areas are involved (e.g. superior colliculus)
David Marr’s Perception Model

- Modular processing stages
 1. Retinal image
 - Spatial distribution of light intensities on the retina
 2. Primal sketch
 - Basic features of the scene (e.g. contours, edges, ...)
 3. 2 ½-D sketch
 - Grouping of basic features to represent areas, rough depth characteristics, ...
 4. 3-D model representation
 - Combination to form 3-D environmental objects
 - Representation of the existing world
 - Subjective perception of the observer
David Marr’s Perception Model

- Marr proposed an algorithm and implementation of the model

 - Retinal image
 - Input intensity image on retina (2-D)

 - Primal sketch
 - Basic features of the scene (e.g. contours, edges, regions ...)
 - Detection of intensity changes in image
 - Convolution with edge detection operator (e.g. Marr-Wavelets or Difference-of-Gaussians filter)
David Marr’s Perception Model

- 2½-D sketch
 - Viewer-centered combination of information from both eyes
 - Rough depth and spatial information
 - Optical flow, rough reconstruction of distances

- 3-D model representation
 - Object centered hierarchical model of the world
 - Generalized Prototypes consisting of cones and cubes
 - Scene visualized as 3-D map
David Marr’s Perception Model

• Discussion
 • Model combines insights from psychology, neurophysiology and artificial intelligence (computer vision)
 • Proposed idea: One must understand 3 levels to analyze an information processing systems
 – Computational level (goals of the system)
 – Algorithmic level (how is input transformed to output?)
 – Implementational level (physical realization)
 • Some physiological validation (e.g. ganglion cells in retina are very similar to Difference-of-Gaussian filters)
 • Ignores important aspects perception
 – Color information
 – Multimodality (e.g. McGurk effect)
 – High level cognitive processes (bottom-up approach)

Perception is pure transformation from visual sensory input
Bottom-up / Top-down Processing

• Perception and recognition of stimuli can be guided from different directions

• Bottom-up processing
 • Originates from sensory information (pattern parts and their context)
 • From the individual pattern parts to the whole
 • Data driven

• Top-down processing
 • Originates from cognitive processes (high level knowledge/expectations)
 • From the whole to the individual pattern parts
 • Goal driven

• Human perception works in both directions
 • Some brain areas do bottom-up others top-down (both interconnected)
 • Experimental results
 – Bottom-up: Long presentation of stimulus, visually clear
 – Top-down: Short presentation of stimulus, vague visual clarity
Top-down Bottom-up in ASR

- Example: Automatic Speech Recognition exploits top-down as well as bottom-up processing

- Bottom-up: Acoustic information
 - Contributes sensory information to the recognition process
 - Extract features based on frequency characteristics of phones from audio data
 - Classification by Gaussian Mixture Models

- Top-down: Language information
 - Contributes information on syntax and semantic
 - Integrates prior knowledge about speech into recognition process
 - Statistical model learned on large text databases
 - Guides recognition process, i.e. which acoustic models will be evaluated
Inattentional Blindness

- Only a small region of the scene is analyzed (i.e. attended) in detail at each moment
- Famous invisible gorilla test (Simons & Chabris, 1999)
 - More than 50% of subjects do not see the gorilla
 - Effect is dependent on difficulty of the distraction task
 - → Relationship between visual impression and perception is strongly dependent on attention

- Selective attention
 - We perceive events selectively
 - Only when we have attention on them

- Shows how important attention is for human cognition
Other Famous Effects of Attention

- **Cocktail party effect**
 - Humans are able to select one of different acoustic sources from a mixed incoming signal
 - But if somebody says your name it immediately catches your auditory attention
 - Binaural effect related to the auditory localization

- **Pop-out effect**
 - Some properties of stimuli make them stand out and immediately catch attention
 - Visual search has very low reaction time
 - Mostly occurs when distractors are homogeneous
 - Scenes are called odd-man-out scenes
What is Attention?

- **Definitions**
 - Cognitive Psychology, Solso (2005 p. 83): The concentration of mental effort on sensory or mental events
 - Corbetta (1990): Attention defines the mental ability to select stimuli, responses, memories, or thoughts that are behaviorally relevant among the many others that are behaviorally irrelevant

- **Limited resources for cognitive processing and behavioral actions**
 - Selection of information
 - Unbounded visual search is NP-complete (Garey & Johnson, 1979)

- **Goal of attention is control of behavior (“selection for action”)**
 - Frintrop et al. (2010): “In the broadest sense, any pre-processing method might be called attentional, because it focuses subsequent processing to parts of the data which seem to be relevant.”
Overt and Covert Attention

- **Overt attention**
 - Directing of senses towards a stimulus source
 - Example: Focus an object with the eyes

- **Covert attention**
 - Mental focusing on one of several sensory stimuli
 - Covert visual attention is linked to saccadic eye movement
 - Examples: How does your left big toe feel?
 Suddenly spot your name in a list
Broadbent’s Filter Theory

- *Perception and Communication* (Donald Broadbent, 1958)
- Simple classical descriptive model of attention

- Attention is the result of an information processing system with restricted capacity ("bottleneck")
- Channel capacity is limited (in information theory sense)

- Brain is not capable to process all incoming sensory stimuli
- Humans focuses of selectively on few stimuli and ignores a major part of the other stimuli
Broadbent’s Filter Theory

- Pipeline model (serial processing)

 - All incoming perception gets into sensory buffer
 - Filter directly after sensory buffer
 - based on physical characteristics (e.g. pitch, intensity)
 - not based on analyses of information (e.g. no semantic information)
 - Filtered information gets into single serial limited capacity channel
Discussion of Broadbent’s Model

• Model assumption
 • Early filters based on physical characteristics (eg. Location, size, frequencies, etc.)
 – Filtering occurs before stimulus information is processed
 • Split attention requires fast multiplexing of the filter

• Extentions of Broadband’s model
 • Attenuation of unattended information (Treisman)
 • Late selection (eg. Deutsch&Deutsch 1963): All sensory information are preliminarily analyzed
 • Physiological evidence that humans use early filtering and late selection (Pashler, 1996)
Treisman’s Feature Integration Theory (1980)

- **Preattentive processing**
 - *Features* are processed as first step of visual processing instead of pure physical characteristics
 - Detectors for each feature
 - Level of analysis depends on available processing resources
 - Representation in feature maps
 - For each feature
 - Topographical map (correspond to locations on retina)

- **Attentive processing**
 - Fusion of all features into master map of locations
 - Attentional spotlight is focus of attention
 - Unattended information is no completely filtered but attenuated -> cocktail party effect
Features

- FIT adds basic features into Broadband’s filter theory and is the basic architecture found in many modern computational attention systems.

- Neuroscientific findings (fMRI, intracortical EEG) that brain processes basic visual features.

- Experimental evidence:
 - Example: Visual search experiments
 - Target is single feature
 - Distractors are homogeneous and different in the feature.

- Primitive features of human perception:
 - Color and intensity, Motion, Orientation, Size
 - Probably: flicker, luminance, small break in line, depth, etc.
Saliency Map based attention

- Roots in Treisman’s Feature Integration Theory
- Basic process of Saliency map based attention
 1. Feature maps representing conspicuity of stimuli in a particular feature
 2. Topographic saliency map (combination of feature maps)
 3. Selective mapping into central non-topographic representation
 4. Winner-take-all selection on conspicuity of location and proximity
 5. Inhibition of selected location causing shift to next most conspicuous location
Saliency and Bottom-up attention

- Calculate those regions in an image interesting/relevant for further processing

- Basic structure of most bottom-up attention systems
 - Extract several features in parallel from input images
 - Fuse into saliency map
 - Find the most salient region
 - Set focus application’s attention

- Other architectures not discussed here
 - Connectionist
 - Dynamic systems
Empirical Evaluation of Attention models

- Detection of known effects usually on artificial images (e.g. odd-man-out scenes)

- Large databases primarily for evaluation of saliency based visual attention exist
 - Real world images
 - Groundtruth based on eye tracking data

- Application performance of attention systems
 - Support subsequent information processing (less computational time, accuracy of results)
 - Quantitative measurement of task performance
 E.g. success rate and speed of robot performing putting plate on a table
 - Qualitative measurement of natural behavior of a humanoid
iCub’s Attention Framework

- iCub (open) Humanoid Robot Platform
- Visual and Acoustic saliency maps
- 2 eyes and 2 spiral formed ears
- Real-time control 6 degrees of freedom for neck and eyes
Multimodal Saliency-Based Bottom-Up Attention
A Framework for the Humanoid Robot iCub

Jonas Ruesch1,2, Manuel Lopes1, Alexandre Bernardino1, Jonas Hörnstein1, José Santos-Victor1, Rolf Pfeifer2

Presented at ICRA’08, May 21, Pasadena, US

1) Instituto Superior Técnico Lisboa, VisLab, Portugal
2) University of Zurich, AlLab, Switzerland
iCub’s Attention Framework

- **Bottom-up attention system** to control head and eye movements

- **Visual Saliency features**
 - Intensity
 - Grayscale conversion
 - Filtering with Mexican hat wavelets
 - Hue (color)
 - Calculate opponent-color channels
 - Maximum value of \(\{r', g', b', y'\} \) smoothed to single output saliency feature map

\[
\begin{align*}
r' &= r_n - (g_n + b_n)/2 \\
g' &= g_n - (r_n + b_n)/2 \\
b' &= b_n - (r_n + g_n)/2 \\
y' &= \frac{r_n + g_n}{2} - b_n - |r_n - g_n|
\end{align*}
\]
iCub’s Attention Framework

- Directional features
 - Gabor filters at 3 different scales and 4 different orientations (rotation)
- Motion
 - Reichard correlation (spatio temporal correlation model)

- Auditory Saliency features
 - Interaural time difference
 - Calculation of interaural time difference by crosscorrelation gives azimuth angle (left-right) of the sound source
iCub’s Attention Framework

- Interaural spectral difference
 - The shape of the ears changes the frequencies as a function H of the location of the sound source
 - Spectral notches: Certain frequencies are canceled by wave reflected at the pinna
 - Spectral notch occurs when microphone-pinna distance is $n \frac{\lambda}{2} + \frac{\lambda}{4} = d \ (n = 0, 1, 2, \ldots)$ with wavelength λ
 - Calculate difference between spectra of the acoustic signal received by the two ears
 - Train classifier with minima of the difference spectrum as feature for various angles and distances
Multimodal integration of Saliency Maps

- Ego-sphere coherent representation of multimodal saliency
- Project stimulus intensity onto modality specific ego-sphere (polar coordinates)
- Fusion into single saliency ego-sphere by simply taking the maximum at each location
- Egocentric saliency map corresponds to robot’s short-term memory
 - Robot can shift attention to previously recognized salient regions
 - Decay at each timestep with a forgetting factor
Visual Exploration

- **Inhibition-of-return**: seek regions that have not been attended in the past → exploration
 - Habituation map H
 - Encodes getting used to persistent or repetitive stimuli and drawing attention towards novel salient regions
 - Gaussian around Focus of attention $G_h(\vartheta - \vartheta_0, \varphi - \varphi_0)$
 - Inhibition map A
 - Inhibition of regions close to the focus of attention for some time
 - Add Gaussian to A, when H exceeds threshold at specific location
 - Multiplication of Saliency map with A
 - Location with highest overall saliency is attended

- Development over time:

 $$H(t) = H(t-1) + d_h(G_h(\vartheta - \vartheta_0, \varphi - \varphi_0) - H(t-1))$$
 $$A(t) = A(t-1) + d_a(1.0 - A(t-1))$$
Top Down Cues

• Most implementations of attention models are purely bottom-up, but

• Do you look into the sky when you are searching a person in a street scene?

• Knowledge of the outer world integrated in top-down fashion
 • Semantic category of the scene (aka gist)
 • Prior knowledge about the target
 • Current task
 • Experiences from prior tasks
 • Emotions, desires, motivations

• Implementations
 • Selection/weighting of feature detectors or regions
 • Tuning of conspicuity maps
Guided Visual Search Theory

- Jeremy Wolfe (currently version 4.0)
- Based on Treisman’s Feature Integration Theory
 - Feature maps describing difference to other stimuli at a particular position
 - Overall map of activations, that corresponds to a saliency map
 - Focus attention at location with highest activation
- Visual Search: Find target among distractor stimuli in a scene
- Activation map:
 - Representation of visual space where the activation at a location is the likelihood that the location contains a target
 - Weighted sum of the various sources of top-down and bottom-up guidance
 - Attention will be directed to the item with the highest priority (winner-take-all)
Guided Visual Search Theory

Basic Components of Guided Search

The Stimulus is filtered through broadly-tuned "categorical" channels.

The output produces feature maps with activation based on local differences (bottom-up) and task demands (top-down).

A weighted sum of these activations forms the Activation Map. In visual search, attention deploys limited capacity resources in order of decreasing activation.
Guided Visual Search Theory

- Bottom-up in simple feature search
 - Search for vertical stimulus
- The more an item differs from the others the higher the saliency
- Specific activation in bottom-up map
- No specific activation in top-down maps

- Top-down in conjunction search
 - Search for black vertical stimulus
- No special activation in Bottom-up maps for target
- Specific activations in corresponding top-down maps
Guided Visual Search Theory

- Saliency calculation is assumed to be noisy
- Distractors may have higher activation than target
- → Serial search
 - Non target item is rejected
 - Attention moves on to the next item according to activation ranking of items
- Model can simulate many empirical findings very accurately
- Continuously extended by Wolfe
Perception and attention are classic topics of cognitive psychology and have been strongly researched.

This lecture can only give you a very basic understanding of basic models of perception and attention.

There is an very large number of models of visual attention.

Plus a number of models of other sensory modalities.
Modeling Attention

• Why should we model attention?
 • Understand human perceptual capabilities
 • Reduce the quantity of information to process
 • Experimental interests
 – Robotic vision and human-like behavior
 – Prediction of eye movements and active vision
 – Explanations for biological vision, e.g. neural activity
 – Etc.

• Which is the best model of attention?
• Comparing of cognitive models is often not possible or useful
 • Different focus
 • Level of granularity
 • Descriptive / computational
 • Theoretical / empirical