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Abstract— Modern Brain Computer Interfaces (BCIs) usu-
ally require a calibration session to train a machine learning
system before each usage. In general, such trained systems
are highly specialized to the subject’s characteristic activation
patterns and cannot be used for other sessions or subjects.
This paper presents a feature space transformation that trans-
forms features generated using subject-specific spatial filters
into a subject-independent feature space. The transformation
can be estimated from little adaptation data of the subject.
Furthermore, we combine three different Common Spatial
Pattern based feature extraction approaches using decision-
level fusion, which enables BCI use when little calibration
data is available, but also outperformed the subject-dependent
reference approaches for larger amounts of training data.

I. INTRODUCTION

Common Spatial Patterns (CSPs) [1], [2] are a widely

used spatial filtering method for Brain Computer Interfaces

(BCIs). They can be seen as a standard feature extraction

approach to detect event related (de-)synchronization in

EEG data, as they have good discriminative abilities and

allow some physiological validation (e.g. using topographical

plots). However, because of the strong inter-subject and

inter-session variabilities of the EEG, CSPs are usually cal-

culated subject-dependently from calibration data recorded

immediately before the start of the BCI session. This is a

time consuming and cumbersome procedure for BCI users.

Therefore, minimizing the calibration time before BCI usage

is one of the major challenges in BCI research. Subject-to-

subject transfer, i.e. to learn generalizing patterns from a pool

of subjects and to transfer them to a new subject can help to

overcome long enrollment times. Few studies have addressed

subject-to-subject transfer to enable BCI use with very little

or without calibration data.

Krauledat et al. [3] identified prototypical spatial filters in

multiple previously recorded sessions of a subject using a

clustering approach. The prototype filters have good gener-

alization abilities and can allow BCI use directly after a very

short recalibration time for bias adaptation. However, a large

number of sessions for the subject has to be available before

the user can benefit from the zero training approach.

Falzi et al. [4] used an ensemble learning based ap-

proach to create a subject-independent BCI. They constructed

subject-dependent classifiers for different frequency bands

and sparsely combined their outputs using quadratic regres-

sion with l1 norm penalty regularization. They could achieve

results comparable to subject-dependent reference methods
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using a bias-correction that was applied as an offline post-

processing step.

Kang et al. proposed an approach called Composite CSPs

[5] to reduce calibration time for CSP based BCIs. They

evaluated two different methods to use linear combinations

of covariance matrices estimated from other subjects’ data

for CSP calculation. For a small number of calibration trials

their method outperformed the traditional CSP approach.

Lotte et al. [6] combined different feature extraction

methods and classifiers to find the best setup for subject-

independent BCIs using pooled data from different subjects

for training. They achieved the best results using linear

classifiers and filter bank common spatial patterns, however

the performance was still considerably lower than subject-

dependent classification. In a later study [7] they regularized

CSPs and LDA using covariance matrices from other subjects

and proposed a sequential forward selection algorithm to

select a subset of subjects that maximizes the performance

for the target subject.

Reuderink et al. [8] estimated and adapted the whitening

transform from pre-trial data before CSP calculation in order

to reduce the influence of non-stationarities by normalizing

second order covariance statistics. Their approach could

achieve about the same performance for subject-independent

as for subject-dependent BCI operation. However, their eval-

uation requires pre-trial data, which is only available in a

synchronous (trial-based) BCI protocol. It is not clear if the

approach is also applicable to user-paced BCI interaction

(e.g. using pre-trial data from idle phases). The same data

set and a similar pre-processing as in this study was used.

Tu et al. [9] presented a framework for subject-to-subject

transfer on feature extraction and classification level. They

extracted generalizing and subject-specific filters banks from

a set of candidate filters generated using extreme energy

ratio features by solving optimization problems with l1 norm

regularization. They employed a two level ensemble learning

strategy. In the first level, they generated learners for both

filter banks and combined both learners in the second level.

Evaluations showed a successful subject-to-subject transfer.

The previously proposed approaches that aim to overcome

the long calibration time before BCI use are quite diverse,

however the problem is far from being solved. With this

paper we contribute the following to this line of research:

• We show that a feature space transformation can ef-

fectively transform features from subject-dependently

calculated spatial filters into a subject-independent fea-

ture space and that the transformation parameters can

be estimated from little subject-dependent data.



• We propose to combine three different approaches for

feature extraction using decision-level fusion to create a

classifier that can achieve good performance with very

little calibration data and also outperform the reference

methods in our experiment when more calibration data

is available.

II. MATERIAL AND METHODS

A. DATA CORPUS

We used the EEG Motor Movement/Imagery Dataset

freely available from PhysioNet [10]. It consists of 64 chan-

nel EEG recordings of 109 different subjects assessed using

the BCI2000 instrumentation system [11] at 160 Hz sampling

rate. For each subject, we chose to use the runs 6, 10, and 14

of the recording session, where subjects had to perform two

different classes of motor imagery: moving both fists versus

moving both feet. Therefore, we used 45 trials per subject.

Four subjects have been left out as their recordings consist

of less trials. The terms subject-independent and session-

independent can be used synonymously in the following, as

there is one recording session per subject.

The left part of Figure 1 shows the partitioning of the data

for the evaluations in this paper. We split the data into three

different sets: The first 50 sessions form an independent set

of subjects (S1) that do not occur in the data sets used for

testing. Each of the remaining sessions were chronologically

split into a first part for calibration (S2) and a second part for

testing (S3). In section III we compare results for different

ratios of calibration and test set size.
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Fig. 1. Left: Partitioning of the data set into S1, S2, and S3. Right: Data
usage of the three approaches CALIB, POOL, and TRANS in training and
testing phases.

B. PREPROCESSING

We extracted trials of 3.5 seconds length starting at 0.5

seconds after each stimulus. We rereferenced the trial data

to common average reference and removed signal offsets and

linear trends from each trial. A 5th order Butterworth filter

between 8-30 Hz was applied to bandpass filter the data.

For each of the approaches in this paper we applied spatial

filters based on CSPs regularized with diagonal loading,

where the regularization parameter was estimated using

5-fold cross-validation (see [12] for a comparison of different

regularization techniques for CSPs). We used the two most

discriminative spatial filters for each of the two classes (first

and second columns of the CSP transformation matrix, i.e. 4

spatial filters).

C. FEATURE EXTRACTION

For feature extraction, we employed three different ap-

proaches based on logarithmic variance features [1] cal-

culated from the pre-processed and spatially filtered EEG

data. We call the approaches CALIB, POOL, and TRANS

throughout this paper:

CALIB: Logarithmic variance features based on the output

of spatial filters, subject-dependently calculated from the

calibration data S2. This can be seen as a standard design

for subject and session dependent BCIs (e.g. [1], [2]).

POOL: Logarithmic variance features based on the output

of spatial filters calculated from the pool of all sessions of the

independent data set S1 combined into one single session.

This is a simple method to create a subject-independent BCI.

TRANS: Logarithmic variance features based on spatial

filters calculated from each session of the data set S1

transformed into a subject-independent feature space. This

approach allows to train an subject-independent classifier

that can be used in combination with a subject-dependently

learned feature space transformation.

The right part of Figure 1 summarizes, which parts of

the data set are used by CALIB, POOL, and TRANS during

training and testing. For the evaluation (using data set S3)

of the approach TRANS, the feature space transform was

estimated on the data set S2 for each subject.

In the approach TRANS, 200 spatial filters are calculated

during training (50 sessions x 4 spatial filters). Since many

of the available filters are not discriminative for larger groups

of subjects, we selected only a small subset of spatial filters

that are most discriminative for all of the subjects in the data

set S1. As a selection criterion, we define the discriminative

ratio dr(wi) of filter wi, as the absolute value of the ratio

of average logarithmic variance features between the two

classes for all n sessions, as follows:
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1
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where wi is the ith spatial filter generated from the indepen-

dent data set S1. x
p
jc

∈ Xp is the jc
th trial in session p that

has the class label c ∈ {+,−} and npc is the number of trials

of class c in session p. If the average of the log variance

features is identical for both classes, the variance quotient

becomes vq(wi) = 1. This indicates that features generated

by the spatial filter wi cannot separate the two classes for

this particular session. In this case the variance quotient does

not contribute to the corresponding discriminative ratio. The

larger the difference of average log variance features between

the two classes for all sessions, the larger dr(wi). For the

evaluations in this paper we chose to use the k = 10 spatial

filters with the largest dr(·), which appeared to cover a

reasonable amount of filters with high discriminative power

according to the distribution of dr(·) values.

To transform subject-specific features into a subject-

independent feature space, we applied a simple linear func-

tion to the logarithmic variance features y generated from



spatial filter w and subject p:

fp
w(y) = apw + bpw · y. (3)

We determined the transformation parameters apw and bpw
to scale and shift the input features of the first class (+)

near a predefined target value t+ = 1 and the features

of the second class (-) near a different target value t− =
−1. The parameters can be estimated by minimizing the

corresponding quadratic error function as an overdetermined

equation system using QR decomposition:

argmin
a
p
w,b

p
w

(fp
w(y)− tc)

2, ∀ y ∈ Y p
c,w, c ∈ {+,−}, (4)

where Y p
c,w is the set of logarithmic variance features

generated using spatial filter w and subject p that belong

to class c.

For classifier training, the transformation parameters apw
and bpw were estimated for each spatial filter and each subject

in the independent data set S1. For the evaluation (data set

S3) they were estimated on the calibration data S2 of the

target subject. To increase the robustness of the estimates for

apw and bpw, we employed bootstrap aggregating (bagging)

[13]. For this purpose, we calculated the median result of

100 iterations of drawing random samples with replacement

from the training data and calculating the optimization prob-

lem (4).

D. CLASSIFICATION AND DECISION-LEVEL FUSION

For each of the three approaches CALIB, POOL, and

TRANS, features of the test data set S3 were extracted

and classified using Linear Discriminant Analysis (LDA). In

addition, we combined the three approaches by decision-level

fusion. In this approach we aggregated the outputs of the

three independent classifiers of CALIB, POOL, and TRANS

for each trial using weighted majority voting. The squared

distance from the separating hyperplane was used as voting

weight, which is an indicator for the classifiers’ confidence.

In the following, we call this approach FUSED.

III. RESULTS

Figure 2 shows the recognition accuracies averaged across

the 55 test subjects (S3) of the approaches CALIB, POOL,

TRANS, and FUSED for different ratios of splitting the

sessions into calibration set (S2) and test set (S3). Please

note that only 45 trials per session were available for the

evaluations. Therefore, a large number of calibration trials

leads to a small number test trials, which can reduce the

reliability of the prediction (e.g. the results for 40 calibration

trials were produced by only 5 test trials per session).

Due to interindividual differences (including low and high

performers), the performances of the 55 different sessions

in the test set vary strongly (std. up to 11-24 %, depending

on the number of calibration trials). However, the session-

wise performance differences among the four approaches

are quite stable, which allows to show significant pairwise

performance improvements of the proposed approaches.

When only a small number of trials was available for

calibration, the subject-dependent approach CALIB suffered
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Fig. 2. Recognition accuracies averaged accross the test subjects for
different ratios of splitting the session into calibration and test data.

from insufficient data, even though regularized CSPs have

been used. Its performance increased strongly as more data

for training was used. The subject-independent approach

POOL does not use the calibration data S2, therefore its

performance is quite stable and only affected by the test

sets of different size. It outperformed the other approaches

for a very small number of 5 trials, however its overall

performance was below the other approaches for more than

5 trials (significantly below the other approaches for more

than 20 trials, paired t-tests p < 0.05). The proposed

approach TRANS realized a successful subject transfer, as

it outperformed the standard subject-dependent approach

CALIB for up to 30 calibration trials. The approach FUSED

achieved the overall best performance of up to 72 % accuracy

in the experiment. The fusion increased the performance

above its fundamental approaches for a very small number of

calibration trials, but also outperformed the other approaches

for the maximum number of 40 calibration trials. For up to 20

calibration trials it performed significantly better than CALIB

(paired t-tests p < 0.02). Therefore, the proposed approach

FUSED offers a high flexibility and good performance.

Further analyses showed that FUSED benefits from all of

its fundamental methods, e.g. POOL contributed information

that led to performance improvements, even when a large

number of calibration trials were available. The proposed

approach TRANS is most flexible fundamental approach and

strongly improved recognition performance in all evaluations

of FUSED.
TABLE I

COMPARISON OF DIFFERENT MODES TO ESTIMATE THE

TRANSFORMATION PARAMETERS FOR THE APPROACH TRANS. RESULTS

SHOW RECOGNITION ACCURACY IN PERCENT.

Parameter Estimation Mean (std.) Median

No (a = 0, b = 1) 58.2 (12.0) 57.1
On 10 calibration trials 66.2 (14.7) 65.7
On 35 test trials 72.7 (11.8) 74.3

Table I shows the results of TRANS for the test session

S3 using different modes to determine the feature space



Fig. 3. Topographical plots of the 10 spatial filters selected in approach TRANS.

transformation parameters. The first row shows recognition

accuracies without applying the transform (i.e. a = 0, b = 1).

Row two shows the results, where the feature space trans-

formation parameters were estimated on 10 calibration trials.

Applying the transform strongly improved the performance,

even in the case where as few as 5 trials per class are

available for calibration. This shows the effectiveness of the

proposed feature space transform. More data to estimate the

transform did further improve the performance (cf. Fig. 2

approach TRANS). The third row shows the results, where

the transform is estimated on the 35 test trials. This can

be seen as an upper bound of finding optimal transformation

parameters, however it requires knowledge of the class labels

that are not available in testing.

We chose to use a linear transform because of its simplicity

and its ability for easy and robust estimation. Please note that

more simple linear transforms, such as additive correction of

the session bias (cf. [14]) or feature scaling did not perform

as effectively as the proposed feature space transform.

Figure 3 shows the topographical plots of the 10 spatial

filters selected in approach TRANS. The most influential

regions are at the sensorimotor areas and the occipital cortex.

The spatial filter weights are fairly localized to discriminative

areas and are not strongly affected by artifacts.

IV. CONCLUSION

The proposed feature space transform approach TRANS

could successfully transform features based on subject-

dependently trained spatial filters into an subject-independent

feature space, as it outperformed the subject-dependently

trained system CALIB for small numbers of calibration

trials to estimate the transform. This leads to a substantially

reduced calibration time for BCI users. Furthermore, the pro-

posed fusion FUSED of subject-dependently trained (CALIB),

subject-independent pooled systems (POOL), and feature

space transformed (TRANS) outperformed the other BCI

designs and achieved the best performance for all calibration

set sizes in our experiment. Therefore, our approach was able

to learn and transfer information from the independent set

of sessions for the prediction of unseen subjects robustly for

different amounts of calibration data.

In future work, we will evaluate our approach in an online

application. Furthermore, we plan to investigate if the feature

space transformation can be updated using unsupervised

adaptation methods.
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